Sains Malaysiana 53(6)(2024): 1377-1387

http://doi.org/10.17576/jsm-2024-5306-12

 

Characterization and Correction of Fading Effects in GeDOFs Microdosimeter for Absorbed Dose Measurements

(Pencirian dan Pembetulan Kesan Pudar dalam Mikrodosimeter GeDOFs untuk Pengukuran Dos Serap)

 

NORAMALIZA MOHD NOOR1, NIZAM TAMCHEK2, UNG NGIE MIN3, MOHD TAUFIK DOLAH4 & MUHAMMAD SAFWAN AHMAD FADZIL5,*

 

1Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

4Radiation Safety and Health Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

5Diagnostic Imaging and Radiotherapy Program, Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

 

Diserahkan: 8 Oktober 2023/Diterima: 2 Mei 2024

 

Abstract

This study investigates the thermoluminescence (TL) fading of fabricated germanium-doped optical fibers (GeDOFs) with a focus on TL signal intensity, glow curve, best-fit curve, and correction factor. Two distinct GeDOFs geometries, cylindrical fiber (CF) and flat fiber (FF), were compared for TL intensity decay under 6 MV and 10 MV photon beams. TL intensity measurements were recorded from the first day post-irradiation to the 106th day and a comparison of two fading curve-fitting approaches was carried out. Fading correction factor () was derived, and the corresponding uncertainties were calculated. Over time, GeDOFs exhibited a decline in TL intensity, with a notably rapid decay occurring in the initial 30 days after irradiation. The most substantial TL intensity loss was observed in FF, with values of 58.9% for 6 MV and 63.4% for 10 MV. The evaluation of curve fitting showed that the best conformity was achieved through a single exponential decay equation model. The area under the glow curve decreased as the time between GeDOFs irradiation and TL readout increased. was determined by comparing the fading function of reference GeDOFs to that of the measured ones. The estimated uncertainties associated with  were found to be 0.06% for CF and 0.12% for FF, respectively. GeDOFs exhibit fading characteristics influenced by TL readout interval time and radiation energy. When quantifying the absorbed dose from photon beams, it is crucial to account for the fading correction factor to ensure the precise and accurate measurement of the dose.

 

Keywords: Correction factor; dosimetry audit; fading; Ge-doped optical fibres

 

Abstrak

Kajian ini meneliti kemerosotan termopendarcahaya (TL) gentian optik dop Ge yang difabrikasi (GeDOFs) dengan tumpuan diberikan kepada keamatan isyarat TL, lengkungan bara, lengkungan padanan terbaik dan faktor pembetulan. Dua geometri GeDOFs yang berbeza, gentian silinder (CF) dan gentian leper (FF) dibandingkan tahap kemerosotan keamatan TL di bawah sinaran foton 6 MV dan 10 MV. Pengukuran keamatan TL direkodkan dari hari pertama selepas penyinaran hingga hari ke-106 dan perbandingan antara dua pendekatan padanan lengkungan kemerosotan telah dijalankan. Faktor pembetulan kemerosotan signal ( ) diterbitkan dan ketidakpastian yang berkaitan telah dihitung. Seiring berjalannya masa, GeDOFs menunjukkan penurunan keamatan TL dengan kemerosotan yang ketara berlaku dalam tempoh 30 hari pertama selepas penyinaran. Kehilangan keamatan TL yang paling ketara diperhatikan pada FF, dengan nilai pengurangan sebanyak 58.9% untuk 6 MV dan 63.4% untuk 10 MV. Penilaian padanan lengkungan menunjukkan bahawa padanan terbaik dicapai melalui model persamaan kemerosotan eksponensial tunggal. Kawasan di bawah lengkungan bara berkurang apabila masa antara penyinaran GeDOFs dan pembacaan TL meningkat.  ditentukan dengan membandingkan fungsi kemerosotan signal GeDOFs rujukan dengan yang diukur. Anggaran ketidakpastian yang berkaitan  berada pada kadar 0.06% untuk CF dan 0.12% untuk FF. GeDOFs menunjukkan ciri kemerosotan signal yang dipengaruhi oleh selang masa bacaan TL dan tenaga sinaran. Apabila mengukur dos terserap daripada sinaran foton, adalah penting untuk mempertimbangkan faktor pembetulan kemerosotan signal untuk memastikan pengukuran dos yang tepat.

 

Kata kunci: Audit dosimetri; faktor pembetulan; gentian optik dop Ge; kemerosotan signal

 

RUJUKAN

Abdullah, N., Bradley, D.A., Nisbet, A., Zaman, Z.K., Deraman, S.S. & Noor, N.M. 2022. Dosimetric characteristics of fabricated germanium doped optical fibres for a postal audit of therapy electron beams. Radiation Physics and Chemistry 200: 110346.

Baghel, S.K., Brahme, N., Bisen, D.P., Patle, Y., Richhariya, T., Chandrawanshi, E. & Belodhiya, C. 2022. Luminescence properties of a novel cyan-blue light emitting Ce3+ doped SrZrSi2O7 phosphor. Optical Materials 126: 112141.

Begum, M., Rahman, A.M., Begum, M., Abdul-Rashid, H.A., Yusoff, Z. & Bradley, D.A. 2018. Harnessing the thermoluminescence of Ge-doped silica flat-fibres for medical dosimetry. Sensors and Actuators A: Physical 270: 170-176.

Benabdesselam, M., Mady, F., Cieslikiewicz-Bouet, M., Blanc, W., El Hamzaoui, H., Cassez, A., Bouwmans, G., Bouazaoui, M. & Capoen, B. 2023. Ge-doped optical fibers for passive and active radiation detection modes. IEEE Sensors Journal 23: 6948-6955.

Bos, A.J. 2017. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10: 1357.

Bradley, D.A., Mahdiraji, G.A., Ghomeishi, M., Dermosesian, E., Adikan, F.R.M., Rashid, H.A. & Maah, M.J. 2015. Enhancing the radiation dose detection sensitivity of optical fibres. Applied Radiation and Isotopes 100: 43-49.

Chen, R. 2020. Conduction band-valence band theory of TL and OSL: Emphasis on delocalized transitions and explanation on some unusual effects. Radiation Protection Dosimetry 192(2): 178-195.

Du, J., Feng, A. & Poelman, D. 2020. Temperature dependency of trap‐controlled persistent luminescence. Laser & Photonics Reviews 14: 2000060.

Engin, B., Aydaş, C. & Demirtaş, H. 2010. Study of the thermoluminescence dosimetric properties of window glass. Radiation Effects & Defects in Solids: Incorporating Plasma Science & Plasma Technology 165: 54-64.

Fadzil, M.S.A., Noor, N.M., Min, U.N., Abdullah, N., Dolah, M.T., Pawanchek, M. & Bradley, D.A. 2022a. Dosimetry audit for megavoltage photon beams applied in non-reference conditions. Physica Medica 100: 99-104.

Fadzil, M.S.A., Noor, N.M., Tamchek, N. & Min, U.N. 2022b. Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres. Sains Malaysiana 51(5): 1557-1566.

Fadzil, M.S.A., Tamchek, N., Ung, N.M., Alawiah, A., Abdullah, N., Bradley, D.A. & Noor, N.M. 2018. Assessment of thermoluminescence glow curves and kinetic parameters of fabricated Ge-doped flat fiber for radiotherapy application. Jurnal Sains Nuklear Malaysia 30: 1-14.

Ghomeishi, M., Mahdiraji, G.A., Adikan, F.M., Ung, N.M. & Bradley, D.A. 2015. Sensitive fibre-based thermoluminescence detectors for high resolution in-vivo dosimetry. Scientific Reports 5: 13309.

Gonzales-Lorenzo, C.D., Callo-Escobar, D.J., Ccollque-Quispe, A.A., Rao, T.G., Aragón, F. F.H., Aquino, J.C.R. & Cano, N.F. 2022. Effect of annealing temperature on the structural, thermoluminescent, and optical properties of naturally present salt from Lluta region of Peru. Optical Materials 126: 112215.

Hassan, M.F., Rahman, W.N.W.A., Tominaga, T., Geso, M., Akasaka, H., Bradley, D.A. & Noor, N.M. 2019. Ge-doped silica fibre for proton beam dosimetry. Radiation Physics and Chemistry 165: 108390.

Kandan, V., Hassan, M.F., Omar, N., Shahar, H.K., Mohamad, F., Karim, M.A., Sani, S.A., Bradley, D.A. & Noor, N.M. 2021. Advanced glow curve analysis of fabricated fibres for various sources of ionizing radiation. Radiation Physics and Chemistry 178: 108981.

Lam, S.E., Bradley, D.A., Mahmud, R., Pawanchek, M., Rashid, H.A. & Noor, N.M. 2019. Dosimetric characteristics of fabricated Ge-doped silica optical fibre for small-field dosimetry. Results in Physics 12: 816-826.

Maruyama, D., Yanagisawa, S., Koba, Y., Andou, T. & Shinsho, K. 2020. Usefulness of thermoluminescent slab dosimeter for postal dosimetry audit of external radiotherapy systems. Sensors & Materials 32: 1461-1477.

Mat Nawi, S.N.B., Wahib, N.F.B., Zulkepely, N.N.B., Amin, Y.B.M., Min, U.N., Bradley, D.A., Md Nor, R.B. & Maah, M.J. 2015. The thermoluminescence response of Ge-doped flat fibers to gamma radiation. Sensors 15: 20557-20569.

Noor, N.M., Nisbet, A., Hussein, M., Chu, S., Kadni, T., Abdullah, N. & Bradley, D.A. 2017. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile. Radiation Physics and Chemistry 140: 207-212.

Noor, N.M., Fadzil, M.S.A., Ung, N.M., Maah, M.J., Mahdiraji, G.A., Abdul-Rashid, H.A. & Bradley, D.A. 2016. Radiotherapy dosimetry and the thermoluminescence characteristics of Ge-doped fibres of differing germanium dopant concentration and outer diameter. Radiation Physics and Chemistry 126: 56-61.

Noor, N.M., Hussein, M., Kadni, T., Bradley, D.A. & Nisbet, A. 2014. Characterization of Ge-doped optical fibres for MV radiotherapy dosimetry. Radiation Physics and Chemistry 98: 33-41.

Pereira, J., Pereira, M.F., Rangel, S., Saraiva, M., Santos, L.M., Cardoso, J.V. & Alves, J.G. 2016. Fading effect of LiF: Mg, Ti and LiF: Mg, Cu, P ext-rad and whole-body detectors. Radiation Protection Dosimetry 170: 177-180.

Sarasola-Martin, I., Correcher, V. & García-Guinea, J. 2021. Characterization of the red thermoluminescence emission of doped alumina: A case study for Al2O3:C and Al2O3:Cr, Ni. Journal of Alloys and Compounds 886: 161262.

Sen, M., Shukla, R., Pathak, N., Bhattacharyya, K., Sathian, V., Chaudhury, P. & Tyagi, A.K. 2021. Development of LiMgBO3:Tb3+ as a new generation material for thermoluminescence based personnel neutron dosimetry. Materials Advances 2(10): 3405-3419.

Sorger, D., Stadtmann, H. & Sprengel, W. 2020. Fading study and readout optimization for routinely use of LiF: Mg, Ti thermoluminescent detectors for personal dosimetry. Radiation Measurements 135: 106342.

Termsuk, C., Sweeney, S.J. & Shenton-Taylor, C. 2022. Thermoluminescence glow curve study of beta irradiated germanium doped core fibre with different dopant concentrations. Radiation Physics and Chemistry 193: 109974.

Theinert, R., Kröninger, K., Lütfring, A., Mender, S., Mentzel, F. & Walbersloh, J. 2018. Fading time and irradiation dose estimation from thermoluminescent dosemeters using glow curve deconvolution. Radiation Measurements 108: 20-25.

Weinstein, M., Dubinsky, S., Izak-Biran, T., Leichter, Y., German, U. & Alfassi, Z.B. 2003. A simple method for avoiding fading correction of absorbed dose from glow curves of TLD-100. Radiation Measurements 37: 81-86.

Zakaria, Z., Aziz, M.A., Ishak, N.H., Suppiah, S., Bradley, D.A. & Noor, N.M. 2020. Advanced thermoluminescence dosimetric characterization of fabricated Ge-Doped optical fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and Chemistry 166: 108487.

 

*Pengarang untuk surat-menyurat; email: safwanfadzil@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya